
PyCon Typing Summit 2023

Welcome!



State of Typing

Jelle Zijlstra
Quora



About me

● Contributor to typed Python since 2016
● Maintainer of typeshed, typing-extensions, CPython, the PEPs repo, mypy
● Author of pyanalyze (Quora’s type checker)
● Sponsored six typing PEPs and authored two



History of typing

● A review of typing PEPs through the years
● Marking PEPs with one of:

○ T: type system improvements
○ U: usability improvements



Python 3.5: When it all started

● PEP 484: Type Hints (T)
○ A great start, and still covers most of the types we use most frequently
○ Tried hard to avoid changes to the core language



Python 3.6: First new syntax 

● PEP 526: Variable Annotations (U)
○ Difficult to imagine going without this now
○ Unlocked support for dataclasses (which arrived in 3.7)
○ Also introduced ClassVar



Python 3.7: Impactful changes

● PEP 561: Distributing typed packages (U)
○ A necessary enhancement
○ But has some rough edges

● PEP 563: from __future__ import annotations (U)
○ Aimed to solve the awkwardness of forward references and improve performance
○ The future that has stubbornly refused to arrive



Python 3.8: Basic type system features

● PEP 544: Protocol (T)
● PEP 586: Literal (T)
● PEP 589: TypedDict (T)
● PEP 591: Final / @final (T)

○ All of these have turned out to be essential features that are core to the type system



Interlude: Is TypedDict just a compatibility hack?

● Or an important part of the core type system?
● My view: It is useful and important even in modern Python



Python 3.9: Integrating with the runtime

● PEP 585: list[int] [U]
○ A nice usability improvement

● PEP 593: Annotated [T]
○ Allow stashing non-typing information in annotations
○ Used widely, but few standardized uses have emerged



Python 3.10: Various directions

● PEP 604: | for Union/Optional [U]
○ Another great usability improvement

● PEP 612: ParamSpec [T]
○ A complex feature that allows expressing some previously inexpressible types

● PEP 613: TypeAlias [U]
○ Now superseded by PEP 695’s type … = syntax



Python 3.11: A type system cornucopia

● PEP 646: TypeVarTuple (and new syntax) [T]
○ The most ambitious type system change since 3.8

● PEP 647: TypeGuard [T]
● PEP 655: Required and NotRequired [U]
● PEP 673: Self [U]
● PEP 675: LiteralString [T]
● PEP 681: dataclass_transform [T]
● (rejected) PEP 677: Callable syntax [U]



Python 3.12: The cornucopia continues

● PEP 688: Buffer types [T]
● PEP 692: Unpack[] for kwargs [U]
● PEP 698: @override [T]
● (might not make it) PEP 695: TypeVar syntax [U]

○ Perhaps the biggest core language change motivated by typing
● (might not make it) PEP 649: The new future [U]
● (pending) PEP 696: TypeVar defaults [T]
● (pending) PEP 702: @deprecated [T]
● (pending) PEP 705: TypedMapping [T]



T vs. U

● Marked all PEPs with:
○ T: type system extensions
○ U: usability improvements

● Both are important!
● T-type PEPs help type checkers understand common Python idioms
● U-type PEPs make it easier to write typed Python

○ And these often have the highest impact
○ But they’re also the most controversial

● Let’s think of more ways to improve usability



Successes and unique features

● Innovations unlocked as a result of typing
○ dataclasses (thanks to PEP 526), Pydantic, much better IDE support (e.g. Pylance)

● typing_extensions
○ Allow new type system features to be used without waiting for runtime upgrades

● Many type checkers
○ With complementary strengths



The future

● Improving usability
○ PEP 695 makes generics easy
○ PEP 649 should improve the story for runtime use of annotations
○ Better TypedDict syntax?
○ More ideas needed!

● Type system extensions
○ Some kinds of Python are still hard to express with types
○ Higher-kinded types, type-level math, intersection types, a Map[] operator?

■ Though some of these may not be worth it
● Improving documentation

○ A spec that isn’t just PEPs? (Kevin Millikin’s talk)
○ General user documentation for typing



Questions?


