
Typing Summit
At PyCon US 2024

10 am – 1 pm



Schedule

● 10 am: Welcome
● 10:20 am: Typing Council
● 11:05 am: Alex Waygood: Rust and Python
● 11:30 am: break
● 11:45 am: Carl Meyer: Theory of Type Hints, Revisited
● 12:15 pm: David Foster: TypeForm
● 12:45 pm: Lightning talks

○ Sign up at https://hackmd.io/@jellezijlstra/typing-summit-2024
● 1 pm: End



Notes

https://hackmd.io/@jellezijlstra/typing-summit-2024

● Anyone is free to add notes
● Also for lightning talk signups
● Be respectful (CoC applies)

https://hackmd.io/@jellezijlstra/typing-summit-2024


Introductions

● Name
● How you’re involved in Python typing
● What’s a missing feature from the Python type system that would 

have helped you recently (if any)?



Typing Council
Rebecca Chen
Shantanu Jain

Guido van Rossum
Eric Traut

Jelle Zijlstra



Agenda

● What is the Typing Council?
● Review of the first 6 months
● Statements from Council members
● Questions



Wait, what?

● The type system was created through PEPs: 484, 526, 544, 561, 563, 585, 
586, 591, …

● But many gaps in coverage
● Type checkers had to fill in the gaps
● PEP 729: Typing governance process

○ Created September 2023
○ Accepted November 2023



The Typing Council

● Structure: 5 members
○ Indefinite terms
○ Replacements appointed by fiat

● Mandate: Make the type system
○ Useful
○ Usable
○ Stable



Typing Council: The first six months

Roles:

● PEP review
● Specification
● Conformance tests
● User-facing guide



PEP review

The Council advises on PEPs before they go to the Steering Council.

● PEP 696 (type parameter defaults): accepted
● PEP 705 (ReadOnly in TypedDict): accepted
● PEP 724 (stricter TypeGuard): no consensus, PEP withdrawn
● PEP 742 (TypeIs): accepted
● PEP 728 (TypedDict extra items): ?



Typing specification

● Initial spec created by copy-pasting PEPs
● Expansions

○ Tuples; NamedTuples; constructors; “type expression” definition; context managers
● Changes

○ Allow NoReturn outside of functions; unary + in Literals; TypeVar variance in functions; 
treatment of triple-quoted string annotations; behavior of @no_type_check; runtime use of 
Annotated; old positional-only syntax; TypeGuard/bool compatibility; Final/dataclasses 
interaction

● Assessment
○ Lots of progress
○ More work to do in clearing up and formalizing the spec



Conformance tests

● Set of tests that check whether type checkers implement the spec
● Now covers ~all of the spec
● Checked against mypy, pyre, pyright, pytype
● Room for expansion



User-facing reference

● PEP 729 listed a user-facing reference for the type system as a goal
● https://typing.readthedocs.io
● Sorry :(
● Help welcome

https://typing.readthedocs.io


The road ahead

● Ensure type checkers implement the spec
● Continue to improve the spec
● Make the type system even better



What would you like to see in the type system?

● TypeForm
● Intersection
● A Map operator
● Higher-kinded types
● Shorthand syntax for Callable
● Shorthand syntax for TypedDict
● … Something we haven’t listed



Typing Council
Rebecca Chen
Shantanu Jain

Guido van Rossum
Eric Traut

Jelle Zijlstra



Questions?


