Typing Summit

At PyCon US 2024

10 am -1 pm

Schedule

10 am: Welcome
10:20 am: Typing Council
11:05 am: Alex Waygood: Rust and Python
11:30 am: break
11:45 am: Carl Meyer: Theory of Type Hints, Revisited
12:15 pm: David Foster: TypeForm
12:45 pm: Lightning talks
o Sign up at https://hackmd.io/@)jellezijlstra/typing-summit-2024
e 1pm:End

Notes

https://hackmd.io/@ijellezijlstra/typing-summit-2024

e Anyone is free to add notes
e Also for lightning talk signups
e Be respectful (CoC applies)

https://hackmd.io/@jellezijlstra/typing-summit-2024

Introductions

e Name

e How you're involved in Python typing

e \What's a missing feature from the Python type system that would
have helped you recently (if any)?

Typing Councill

Rebecca Chen
Shantanu Jain
Guido van Rossum
Eric Traut
Jelle Zijlstra

Agenda

What is the Typing Council?
Review of the first 6 months
Statements from Council members
Questions

Wait, what?

e The type system was created through PEPs: 484, 526, 544, 561, 563, 585,
586, 591, ...

e But many gaps in coverage

e Type checkers had to fill in the gaps

e PEP 729: Typing governance process
o Created September 2023
o Accepted November 2023

The Typing Council

e Structure: 5 members
o Indefinite terms
o Replacements appointed by fiat
e Mandate: Make the type system

o Useful
o Usable
o Stable

Typing Council: The first six months

Roles:

PEP review
Specification
Conformance tests
User-facing guide

PEP review

The Council advises on PEPs before they go to the Steering Council.

PEP 696 (type parameter defaults): accepted

PEP 705 (ReadOnly in TypedDict): accepted

PEP 724 (stricter TypeGuard): no consensus, PEP withdrawn
PEP 742 (Typels): accepted

PEP 728 (TypedDict extra items): ?

Typing specification

e Initial spec created by copy-pasting PEPs

e Expansions
o Tuples; NamedTuples; constructors; “type expression” definition; context managers

e Changes
o Allow NoReturn outside of functions; unary + in Literals; TypeVar variance in functions;
treatment of triple-quoted string annotations; behavior of @no_type check; runtime use of
Annotated; old positional-only syntax; TypeGuard/bool compatibility; Final/dataclasses
interaction

e Assessment

o Lots of progress
o More work to do in clearing up and formalizing the spec

Conformance tests

Set of tests that check whether type checkers implement the spec
Now covers ~all of the spec

Checked against mypy, pyre, pyright, pytype

Room for expansion

User-facing reference

PEP 729 listed a user-facing reference for the type system as a goal
https://typing.readthedocs.io

Sorry (

Help welcome

https://typing.readthedocs.io

The road ahead

e Ensure type checkers implement the spec
e Continue to improve the spec
e Make the type system even better

What would you like to see in the type system?

TypeForm

Intersection

A Map operator

Higher-kinded types

Shorthand syntax for Callable
Shorthand syntax for TypedDict
... Something we haven't listed

Typing Councill

Rebecca Chen
Shantanu Jain
Guido van Rossum
Eric Traut
Jelle Zijlstra

Questions?

