
pyanalyze: a semi-static typechecker

Jelle Zijlstra, November 2021
Quora



What is it?

● Typechecker
● Written in Python
● Supports Python 3.6 through 3.10

○ Though mostly 3.6 because that’s what we run
● Takes 13 mins to typecheck 2.6M lines
● https://github.com/quora/pyanalyze 
● Development is driven by finding issues that cause bugs in 

Quora’s codebase

https://github.com/quora/pyanalyze


● Started in 2015, before most other type checkers
● asynq support was a major motivator to keep rolling our 

own
● Customizable

What, another typechecker?



● It imports your code!
● But then it uses the AST for type checking
● Uses the runtime function/class objects for getting 

signatures and annotations
● Only looks at one module at a time

What makes it different?



● pyanalyze has no special casing for the __init__ method 
on dataclasses, because it sees the generated runtime 
__init__ method

Advantage: Understanding dynamic code



● ABC registration, runtime-checkable protocols work 
automatically

● Plugins can call functions in user code
○ e.g. to look up the database schema

Advantage: Calling into user code



But it’s still a static checker

Unlike a dynamic checker, pyanalyze:

● Checks every code path
● Can track extra information (e.g., NewType)



Disadvantages

● Hard to make an incremental mode
● Can’t check scripts that do work when you import them
● Hard to see which attributes exist on a class

○ Though this is probably fixable
● Can’t understand runtime @overload



Typechecking style

● Frequently infers literal types
○ Modules and functions are represented internally as 

literals
● Allows types to change throughout a function
● Mostly ignores variance

○ Just don’t mutate lists passed as arguments



● Missing await
● Names that are undefined in some code paths
● Boolean operations on non-boolable types

○ if is_it_true: vs. if is_it_true():
● Missing f in an f-string

○ Though the heuristics need more tuning
● Lots of asynq-specific checks
● Unused code finder

Supported checks



● Literal supports all types
○ Literal[some_function] means a compatible 

Callable, but this hasn’t proven very useful
● ParameterTypeGuard: like TypeGuard, but works on 

any parameter
● no_return_unless: like TypeGuard, but function 

throws unless the condition is met
● ExternalType: reference to non-imported types

Extensions



● Allows user code to be called and perform arbitrary checks
● Use cases:

○ Allow only literals
○ Allow only picklable objects
○ Disallow Any

Extensions: CustomCheck



● Exposed as pyanalyze.extensions.LiteralOnly
● Implementation just flattens Unions (with flatten_values), 

then errors for anything other than KnownValue (=Literal)
● To use it: Annotated[str, LiteralOnly()]

CustomCheck example: LiteralOnly



A lot:

● Protocol
● @overload
● ParamSpec
● TypeVar bounds
● match/case

What’s missing?



Questions?


