
Typing support for deprecations and
errors

Jelle Zijlstra

@typing.deprecated(...)

● Mark a class, function, or overload as deprecated

● Checkers should issue a diagnostic on usage

CONFIDENTIAL

@typing.typing_error(...)

● Call to a marked function should produce an error

CONFIDENTIAL

Use cases for @typing_error()

● https://github.com/python/typing/issues/1043

● Specific parameter combinations in overloads (e.g.,
open, pow)

● Methods that always throw

● Classes that cannot be constructed (put
@typing_error() on __new__)

CONFIDENTIAL

https://github.com/python/typing/issues/1043

A wrinkle: overload resolution

● Given the `pow()` definition in the previous
slide, what should `pow(1, 1, Any)` do?

● I would not want an error here

● But pyright’s heuristic would pick the first
overload, which has `@typing_error`.

CONFIDENTIAL

● So far, presented a basic proposal for deprecation
and error support

● Now, going into other potentially useful areas

Speculative ideas

CONFIDENTIAL

Deprecations in CPython

● Looked at all deprecations in CPython main (150 total)

○ 74x whole function/method/class

○ 28x whole module

○ 9x parameter

○ 1x constant

○ 38x various complicated conditions

CONFIDENTIAL

Can we cover more of these in the type system?

● A module-level `__deprecated__ = “This module is
deprecated and will be removed in Python 3.13”`?

● param: Deprecated[SomeType, “This parameter is
deprecated”]?

CONFIDENTIAL

deprecated_transform?

● Third-party decorators may want to have some
runtime effect (e.g., throw a warning) in addition to
working like @typing.deprecated

● Idea: Add a PEP 681-style mechanism so that
third-party decorators can have the same effect on
type checkers as @typing.deprecated

CONFIDENTIAL

Questions or discussion?

CONFIDENTIAL

Bonus: Change what *args/**kwargs annotations mean?

● Thomas Wouters suggested that we explore changing
what *args/**kwargs annotations mean

● Should we do this?

CONFIDENTIAL

